Whisker Velocity Patterns Tell Rats What They're Feeling

نویسنده

  • Michael Bunce
چکیده

0001 The recent discovery of a Hobbit-like hominid on the Indonesian island of Flores was startling in some respects—its rather modern existence, for one—but it represents a classic case of Darwinian evolution. For reasons that are not entirely clear, when animals make their way to isolated islands, they tend to evolve relatively quickly toward an outsized or pint-sized version of their mainland counterpart. Following this evolutionary script, the Flores woman, presumably a downsized version of Homo erectus, appears to have shared her island home with dwarf elephants and giant rats. Perhaps the most famous example of an island giant—and, sadly, of species extinction—is the dodo, once found on the Indian Ocean island of Mauritius. When the dodo’s ancestor (thought to be a migratory pigeon) settled on this island with abundant food, no competition from terrestrial mammals, and no predators, it could survive without fl ying, and thus was freed from the energetic and size constraints of fl ight. New Zealand also had avian giants, now extinct, including the fl ightless moa, an ostrich-like bird, and Haast’s eagle (Harpagornis moorei), which had a wingspan up to 3 meters. Though Haast’s eagle could fl y—and presumably used its wings to launch brutal attacks on the hapless moa—its body mass (10–14 kilograms) pushed the limits for self-propelled fl ight. As extreme evolutionary examples, these island birds can offer insights into the forces and events shaping evolutionary change. In a new study, Michael Bunce et al. compared ancient mitochondrial DNA extracted from Haast’s eagle bones with DNA sequences of 16 living eagle species to better characterize the evolutionary history of the extinct giant raptor. Their results suggest the extinct raptor underwent a rapid evolutionary transformation that belies its kinship to some of the world’s smallest eagle species. The authors characterized the rates of sequence evolution within mitochondrial DNA to establish the evolutionary relationships between the different eagle species. Their analysis places Haast’s eagle in the same evolutionary lineage as a group of small eagle species in the genus Hieraaetus. Surprisingly, the genetic distance separating the giant eagle and its more diminutive Hieraaetus cousins from their last common ancestor is relatively small. Without the fossils to directly determine divergence times, Bunce et al. relied on molecular dating techniques that use the rate of sequence evolution in the genes studied to establish the relative evolutionary ages of the eagles. Proposing a divergence date of roughly 0.7–1.8 million years ago, the authors acknowledge that while this is the “best available approximation of the ‘true’ date,” additional molecular data could help refi ne the estimate. Whatever the date of divergence, the extinct giant eagle is clearly an anomaly among the eagles studied here. The increase in body size—by at least an order of magnitude in less than 2 million years—is particularly remarkable, Bunce et al. argue, since it occurred in a species still capable of fl ight. The absence of mammalian competitors facilitated the evolution of much larger eagles and owls on Cuba and may have likewise precipitated the rapid morphological shift seen here. Haast’s eagle, the authors write, “represents an extreme example of how freedom from competition on island ecosystems can rapidly infl uence morphological adaptation and speciation.” Given its similarity to the smaller Hieraaetus species, the authors recommend reclassifying the New Zealand giant as Hieraaetus moorei. This study shows how quickly morphological changes can occur in vertebrate lineages within island ecosystems. Could it be that anthropologists might some day uncover evidence of a giant version of the Flores woman?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel coding schemes of whisker velocity in the rat's somatosensory system.

The function of rodents' whisker somatosensory system is to transform tactile cues, in the form of vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through whisker movements to neuronal responses is not well-understood. Here we examine the role of whi...

متن کامل

Parallel Coding Schemes of Whisker Velocity in the Rat ’ s Somatosensory System 3 4 5

28 29 The function of rodents’ whisker somatosensory system is to transform tactile cues, in the form of 30 vibrissa vibrations, into neuronal responses. It is well established that rodents can detect numerous 31 tactile stimuli and tell them apart. However, the transformation of tactile stimuli obtained through 32 whisker movements to neuronal responses is not well-understood. Here we examine ...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal Encoding of Texture in the Whisker Sensory Pathway

A major challenge of sensory systems neuroscience is to quantify brain activity underlying perceptual experiences and to explain this activity as the outcome of elemental neuronal response properties. Rats make extremely fine discriminations of texture by "whisking" their vibrissae across an object's surface, yet the neuronal coding underlying texture sensations remains unknown. Measuring whisk...

متن کامل

Whisking recovery after automated mechanical stimulation during facial nerve regeneration.

IMPORTANCE Recovery from facial nerve transection is typically poor, but daily mechanical stimulation of the face in rats has been reported to remarkably enhance functional recovery after facial nerve transection and suture repair. This phenomenon needs additional investigation because of its important clinical implications. OBJECTIVE To determine whether automated mechanical stimulation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2005